Classic TTP

The traveling tournament problem (TTP) was introduced by Easton et al. [1] (see also Michael Trick's website) and consists of finding a minimum distance double round-robin tournament for a group of teams. Even for very small instances, no optimal solutions are yet known. The problem can be described as follows:

Input. Given is an even number of teams \(T=\{t_1,\dots, t_n\}\) with \(n\) even; \(D\) a symmetric \(n\) by \(n\) integer distance matrix with elements \(d_{i,j}; l,u\) integer parameters, \(l\leq u\).

Output. A double round-robin tournament on the teams in \(T\) such that:

  • In each time slot, a team plays either at home or away, however the length of every home stand and road trip is between \(L\) and \(U\) inclusive (PL2).
  • No repeaters: at least one time slot between two matches with the same teams (SE1).
  • The sum of the total traveling distance of each team has to be minimized (TR objective).

As an example, the timetable below presents an optimal solution for the NL4 instance for which \(L=1\) and \(U=3\). This timetable makes use of the "Trick format" in which the @-prefix denotes that the team is playing away, e.g. PHI plays away against ATL in round 0. In order to count the total distance traveled by all teams, it suffices to sum over the distance of all the away tours thereby assuming that a team starts and need to return at home. Furthermore, if a team is on an away tour it directly travels from the venue of one opponent to another.

Time slot ATL NYM PHI MON
0 PHI MON @ATL @PHI
1 NYM @ATL MON @NYM
2 MON @PHY NYM @ATL
3 @PHI @MON ATL NYM
4 @NYM ATL @MON PHI
5 @MON PHI @NYM ATL
TTP illustration

TTPPV

The traveling tournament problem with predefined venues (TTPPV) was introduced by Melo et al. [2] and consists of finding a distance minimal single round-robin tournament for which the home advantage of each game is predefined. To model this, the input additionally contains a set of games \(G\) in which a game between \(i\) and \(j\) is represented either by the ordered pair \((i,j)\) or by the ordered pair \(j,i\). "In the first case, the game between \(i\) and \(j\) takes place at the venue of team \(i\); otherwise, at that of team \(j\). For every two teams \(i\) and \(j\) , either \((i, j ) \in G\) or \((j, i)\in G\) [2]". This problem can also be found in the CSPLib [3]. In summary, we have:

Input. Given is an even number of teams \(T=\{t_1,\dots, t_n\}\) with \(n\) even; \(D\) a symmetric \(n\) by \(n\) integer distance matrix with elements \(d_{i,j}\); \(G\) an \(n\) by \(n\) integer game matrix with elements \(g_{i,j}\) equal to one if a game between \(i\) and \(j\) is present, and zero otherwise; \(l,u\) integer parameters, \(l\leq u\).

Output. A single round-robin tournament on the teams in \(T\) such that:

  • In each round, a team plays either at home or away, however the length of every home stand and road trip is between \(L\) and \(U\) inclusive (PL2).
  • Team \(i\) plays a game against team \(j\) at the home venue of \(i\) whenever \(g_{i,j}=1\) (part of the input).
  • The sum of the total traveling distance of each team has to be minimized (TR objective).

TTP-Mirrored

One common practical requirement in scheduling a double round robin schedule is to "mirror" the schedule: if \(i\) plays at \(j\) in the first half of the schedule, then \(j\) plays at \(i\) in the corresponding slot in the second half. The mirrored traveling tournament problem was introduced by Ribeiro & Urrutia [4] and can be summarized as:

Input. Given is an even number of teams \(T=\{t_1,\dots, t_n\}\) with \(n\) even; \(D\) a symmetric \(n\) by \(n\) integer distance matrix with elements \(d_{i,j}; l,u\) integer parameters, \(l\leq u\).

Output. A double round-robin tournament on the teams in \(T\) such that:

  • In each round, a team plays either at home or away, however the length of every home stand and road trip is between \(L\) and \(U\) inclusive (PL2).
  • No repeaters: at least one time slot between two matches with the same teams (SE1).
  • The second half should be mirrored with regard to the firs half (structure: M).
  • The sum of the total traveling distance of each team has to be minimized (TR objective).

TTP-NonRR

The non round-robin traveling tournament problem (TTP-NonRR) is a variant of the Traveling Tournament Problem proposed by Douglas Moody. In this variant, teams do not play a double round robin tournament but rather there is a "Matchups" value between teams \(i\) and \(j\), which gives the number of times \(i\) must visit \(j\). The (regular) TTP is a Non-RR TTP with a matchup value of 1 for all \(i\) not equal to \(j\). In summary, we have:

Input. Given is an even number of teams \(T=\{t_1,\dots, t_n\}\) with \(n\) even; \(D\) a symmetric \(n\) by \(n\) integer distance matrix with elements \(d_{i,j}\); \(G\) a \(n\) by \(n\) integer matchup-value matrix with elements \(g_{i,j}\) equal to the number of games between team \(i\) and \(j\) at the venue of \(i\); \(l,u\) integer parameters, \(l\leq u\).

Output. A possible non-round-robin tournament on the teams in \(T\) such that:

  • In each round, a team plays either at home or away, however the length of every home stand and road trip is between \(L\) and \(U\) inclusive (PL2).
  • No repeaters: at least one time slot between two matches with the same teams (SE1).
  • Team \(i\) plays exactly \(g_{i,j}\) games against team \(j\) at the home venue of \(i\) (part of the input).
  • The sum of the total traveling distance of each team has to be minimized (TR objective).

TTP-Relaxed

This problem is a variant of the Traveling Tournament Problem and is proposed by Renjun Bao and Michael Trick. In this variant, the schedule is not compact: teams have byes in their schedule (i.e. a slot in which a team does not play any game). The number of byes is controlled by a parameter \(K\), the number of byes per team in the schedule. \(K=0\) corresponds to the normal TTP. Byes are ignored in determining the length of a homestand or roadtrip, and in determining whether a repeater has occurred.

Problem instances

We include all seven instance classes from the well-known traveling tournament benchmark from Trick's website. Besides, we include a number of other instance classes proposed in the literature. Each instance class has a maximal number of teams and a single distance matrix: to generate more instances this benchmark simply takes the first entries of the distance matrix.
Instance class Explanation
Constant distance matrix (CON) The constant distance instances [5] are the most simple instances in which the distance between the home venues of any two teams is one. In this case, Urrutia and Ribeiro [5] show that distance minimization is equivalent with break maximization.
circular distance (CIRC) Somewhat similar are the circular distance instances [1] in which the teams' venues are placed on a circle. Any two consecutive teams are connected by an edge and the distance between two teams is equal to the minimal number of edges that must be traversed to get to the other team. Although traveling salesman problems with a circular distance matrix have a trivial solution, it remains challenging to solve circular traveling tournament instances.
Galaxy (GAL) The last artificial instance class consists of the Galaxy instances [6] that use a 3D-space that embeds the Earth and 39 other exoplanets.
National league (NL) The NL-instances [1] are based on air distance between the city centers from teams in the National League of the Major League Baseball.
National football league (NFL) The NFL-instances are based on air distance between the city centers from teams in the National Football League.
Super 14 (SUP) The super 14 instances [7] are based on air distance between the city centers from teams in the Super 14 rugby cup.
Brazilian (BRA) The Brazilian instances are based on air distance between the home cities of 24 teams in the main division of the 2003 edition of the Brazilian soccer championship.
Linear (LINE) In the linear instances , \(n\) teams are located on a straigt line with a distance of one unit separating each pair of adjacent teams.
Increasing distance (INCR) In the increasing distance instances, \(n\) teams are located on a straigt line with an increasing distance separating each pair of adjacent teams such that the distance between team \(t_k\) and \(t_{k+1}\) equals \(k\).

Bibliography

[1] Easton, K., Nemhauser, G. & Trick, M. The Traveling Tournament Problem Description and Benchmarks. In Principles and Practice of Constraint Programming --- CP 2001, pages 580-584, Springer, 2001.
[2] Melo, R.A., Urrutia, S. & Ribeiro, C.C. The traveling tournament problem with predefined venues. J. Sched., 12:607, Springer, 2009.
[3] Pesant, G. CSPLib Problem 068: Traveling Tournament Problem with Predefined Venues (TTPPV). In CSPLib: A problem library for constraints
[4] Ribeiro, C.C. & Urrutia, S. Heuristics for the mirrored traveling tournament problem. EJOR, 179:775-787, Elsevier, 2007.
[5] Urrutia, S. & Ribeiro, C.C. Maximizing breaks and bounding solutions to the mirrored traveling tournament problem. Discrete Appl. Math., 154:1932-1938, Elsevier, 2006.
[6] Uthus, D.C., Riddle, P.J. & Guesgen, H.W. Solving the traveling tournament problem with iterative-deepening A*. J. Sched., 15:601-614, 2012.
[7] Uthus, D.C., Riddle, P.J. & Guesgen, H.W. DFS* and the Traveling Tournament Problem. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pages 279-293, Springer Berlin Heidelberg, 2009.
[8] Fujiwara, N., Imahori, S., Matsui, T. & Miyashiro, R. Constructive Algorithms for the Constant Distance Traveling Tournament Problem. In Practice and Theory of Automated Timetabling VI, pages 135-146, Springer Berlin Heidelberg, 2007.
Instance name Contributor Teams Slots Classification Best LB Best UB Best UB literature History
NL4 Easton, Nemhauser, and Trick 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 8276) (0, 8276) (/, /) history
NL6 Easton, Nemhauser, and Trick 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 23916) (0, 23916) (/, /) history
NL8 Easton, Nemhauser, and Trick 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 39721) (0, 39721) (/, /) history
NL10 Easton, Nemhauser, and Trick 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 59436) (0, 59436) (/, /) history
NL12 Easton, Nemhauser, and Trick 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 108629) (0, 115072) (0, 110729) history
NL14 Easton, Nemhauser, and Trick 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 183354) (0, 207075) (0, 188728) history
NL16 Easton, Nemhauser, and Trick 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 249477) (0, 288016) (0, 261687) history
BRA24 Ribeiro and Urrutia 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 451406) (0, 538866) (/, /) history
SUP4 Uthus, Riddle, Guesgen 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 63405) (0, 63405) (/, /) history
SUP6 Uthus, Riddle, Guesgen 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 130365) (0, 130365) (/, /) history
SUP8 Uthus, Riddle, Guesgen 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 182409) (0, 182409) (/, /) history
SUP10 Uthus, Riddle, Guesgen 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 316329) (0, 316329) (/, /) history
SUP12 Uthus, Riddle, Guesgen 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 453860) (0, 481993) (0, 460998) history
SUP14 Uthus, Riddle, Guesgen 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 557354) (0, 687677) (0, 571632) history
NFL16 Trick 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 223800) (0, 260851) (0, 231483) history
NFL18 Trick 18 34 2RR, C, ∅ | CA3, SE1 | TR (0, 272834) (0, 331542) (0, 282258) history
NFL20 Trick 20 38 2RR, C, ∅ | CA3, SE1 | TR (0, 316721) (0, 384797) (0, 332041) history
NFL22 Trick 22 42 2RR, C, ∅ | CA3, SE1 | TR (0, 378813) (0, 500526) (0, 402534) history
NFL24 Trick 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 431226) (0, 561998) (0, 463657) history
NFL26 Trick 26 50 2RR, C, ∅ | CA3, SE1 | TR (0, 495982) (0, 694018) (0, 536792) history
NFL28 Trick 28 54 2RR, C, ∅ | CA3, SE1 | TR (0, 560697) (0, 770906) (0, 598123) history
NFL30 Trick 30 58 2RR, C, ∅ | CA3, SE1 | TR (0, 688875) (0, 909455) (0, 739697) history
NFL32 Trick 32 62 2RR, C, ∅ | CA3, SE1 | TR (0, 836031) (0, 1178493) (0, 914620) history
GAL4 Uthus, Riddle, Guesgen 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 416) (0, 416) (/, /) history
GAL6 Uthus, Riddle, Guesgen 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 1365) (0, 1365) (/, /) history
GAL8 Uthus, Riddle, Guesgen 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 2373) (0, 2373) (/, /) history
GAL10 Uthus, Riddle, Guesgen 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 4535) (0, 4535) (/, /) history
GAL12 Uthus, Riddle, Guesgen 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 7034) (0, 7357) (0, 7197) history
GAL14 Uthus, Riddle, Guesgen 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 10255) (0, 11412) (0, 10918) history
GAL16 Uthus, Riddle, Guesgen 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 13619) (0, 16023) (0, 14900) history
GAL18 Uthus, Riddle, Guesgen 18 34 2RR, C, ∅ | CA3, SE1 | TR (0, 19050) (0, 22467) (0, 20845) history
GAL20 Uthus, Riddle, Guesgen 20 38 2RR, C, ∅ | CA3, SE1 | TR (0, 23738) (0, 29050) (0, 26289) history
GAL22 Uthus, Riddle, Guesgen 22 42 2RR, C, ∅ | CA3, SE1 | TR (0, 31461) (0, 39025) (0, 33901) history
GAL24 Uthus, Riddle, Guesgen 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 41287) (0, 51056) (0, 44526) history
GAL26 Uthus, Riddle, Guesgen 26 50 2RR, C, ∅ | CA3, SE1 | TR (0, 53802) (0, 66334) (0, 58968) history
GAL28 Uthus, Riddle, Guesgen 28 54 2RR, C, ∅ | CA3, SE1 | TR (0, 69992) (0, 87109) (0, 75276) history
GAL30 Uthus, Riddle, Guesgen 30 58 2RR, C, ∅ | CA3, SE1 | TR (0, 88831) (0, 110237) (0, 95158) history
GAL32 Uthus, Riddle, Guesgen 32 62 2RR, C, ∅ | CA3, SE1 | TR (0, 108374) (0, 136253) (0, 119665) history
GAL34 Uthus, Riddle, Guesgen 34 66 2RR, C, ∅ | CA3, SE1 | TR (0, 133976) (0, 168721) (0, 143298) history
GAL36 Uthus, Riddle, Guesgen 36 70 2RR, C, ∅ | CA3, SE1 | TR (0, 158549) (0, 207117) (0, 169387) history
GAL38 Uthus, Riddle, Guesgen 38 74 2RR, C, ∅ | CA3, SE1 | TR (0, 189126) (0, 253279) (0, 204980) history
GAL40 Uthus, Riddle, Guesgen 40 78 2RR, C, ∅ | CA3, SE1 | TR (0, 226820) (0, 304689) (0, 241908) history
CIRC4 Easton, Nemhauser, Trick 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 20) (0, 20) (/, /) history
CIRC6 Easton, Nemhauser, Trick 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 64) (0, 64) (/, /) history
CIRC8 Easton, Nemhauser, Trick 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 132) (0, 132) (/, /) history
CIRC10 Easton, Nemhauser, Trick 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 242) (0, 242) (/, /) history
CIRC12 Easton, Nemhauser, Trick 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 388) (0, 408) (0, 404) history
CIRC14 Easton, Nemhauser, Trick 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 588) (0, 630) (/, /) history
CIRC16 Easton, Nemhauser, Trick 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 846) (0, 910) (/, /) history
CIRC18 Easton, Nemhauser, Trick 18 34 2RR, C, ∅ | CA3, SE1 | TR (0, 1188) (0, 1356) (0, 1294) history
CIRC20 Easton, Nemhauser, Trick 20 38 2RR, C, ∅ | CA3, SE1 | TR (0, 1600) (0, 1842) (0, 1732) history
CIRC22 Easton, Nemhauser, Trick 22 42 2RR, C, ∅ | CA3, SE1 | TR (0, 2068) (0, 2738) (/, /) history
CIRC24 Easton, Nemhauser, Trick 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 2688) (0, 3470) (/, /) history
CIRC26 Easton, Nemhauser, Trick 26 50 2RR, C, ∅ | CA3, SE1 | TR (0, 3380) (0, 4432) (/, /) history
CIRC28 Easton, Nemhauser, Trick 28 54 2RR, C, ∅ | CA3, SE1 | TR (0, 4144) (0, 5162) (/, /) history
CIRC30 Easton, Nemhauser, Trick 30 58 2RR, C, ∅ | CA3, SE1 | TR (0, 5100) (0, 6266) (/, /) history
CIRC32 Easton, Nemhauser, Trick 32 62 2RR, C, ∅ | CA3, SE1 | TR (0, 6144) (0, 7734) (/, /) history
CIRC34 Easton, Nemhauser, Trick 34 66 2RR, C, ∅ | CA3, SE1 | TR (0, 7276) (0, 8866) (/, /) history
CIRC36 Easton, Nemhauser, Trick 36 70 2RR, C, ∅ | CA3, SE1 | TR (0, 8640) (0, 10430) (/, /) history
CIRC38 Easton, Nemhauser, Trick 38 74 2RR, C, ∅ | CA3, SE1 | TR (0, 10108) (0, 12348) (/, /) history
CIRC40 Easton, Nemhauser, Trick 40 78 2RR, C, ∅ | CA3, SE1 | TR (0, 11680) (0, 13798) (/, /) history
CON4 Urrutia, Ribeiro 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 17) (0, 17) (/, /) history
CON6 Urrutia, Ribeiro 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 43) (0, 43) (/, /) history
CON8 Urrutia, Ribeiro 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 80) (0, 80) (/, /) history
CON10 Urrutia, Ribeiro 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 124) (0, 127) (0, 124) history
CON12 Urrutia, Ribeiro 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 181) (0, 183) (0, 181) history
CON14 Urrutia, Ribeiro 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 252) (0, 262) (0, 252) history
CON16 Urrutia, Ribeiro 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 327) (0, 332) (0, 327) history
CON18 Urrutia, Ribeiro 18 34 2RR, C, ∅ | CA3, SE1 | TR (0, 414) (0, 419) (0, 417) history
CON20 Urrutia, Ribeiro 20 38 2RR, C, ∅ | CA3, SE1 | TR (0, 520) (0, 535) (0, 520) history
CON22 Urrutia, Ribeiro 22 42 2RR, C, ∅ | CA3, SE1 | TR (0, 626) (0, 633) (0, 626) history
CON24 Urrutia, Ribeiro 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 744) (0, 751) (0, 749) history
CON26 Urrutia, Ribeiro 26 50 2RR, C, ∅ | CA3, SE1 | TR (0, 884) (0, 904) (0, 896) history
CON28 Urrutia, Ribeiro 28 54 2RR, C, ∅ | CA3, SE1 | TR (0, 1021) (0, 1030) (0, 1021) history
CON30 Urrutia, Ribeiro 30 58 2RR, C, ∅ | CA3, SE1 | TR (0, 1170) (0, 1179) (/, /) history
CON32 Urrutia, Ribeiro 32 62 2RR, C, ∅ | CA3, SE1 | TR (0, 1344) (0, 1369) (0, 1359) history
CON34 Urrutia, Ribeiro 34 66 2RR, C, ∅ | CA3, SE1 | TR (0, 1512) (0, 1523) (0, 1512) history
CON36 Urrutia, Ribeiro 36 70 2RR, C, ∅ | CA3, SE1 | TR (0, 1692) (0, 1703) (/, /) history
CON38 Urrutia, Ribeiro 38 74 2RR, C, ∅ | CA3, SE1 | TR (0, 1900) (0, 1930) (0, 1918) history
CON40 Urrutia, Ribeiro 40 78 2RR, C, ∅ | CA3, SE1 | TR (0, 2099) (0, 2112) (0, 2099) history
LINE4 Hoshino, Kawarabayashi 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 24) (0, 24) (/, /) history
LINE6 Hoshino, Kawarabayashi 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 76) (0, 76) (/, /) history
LINE8 Hoshino, Kawarabayashi 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 156) (0, 162) (/, /) history
LINE10 Hoshino, Kawarabayashi 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 288) (0, 370) (/, /) history
LINE12 Hoshino, Kawarabayashi 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 480) (0, 584) (/, /) history
LINE14 Hoshino, Kawarabayashi 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 740) (0, 918) (/, /) history
LINE16 Hoshino, Kawarabayashi 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 1080) (0, 1320) (/, /) history
LINE18 Hoshino, Kawarabayashi 18 34 2RR, C, ∅ | CA3, SE1 | TR (0, 1512) (0, 1926) (/, /) history
LINE20 Hoshino, Kawarabayashi 20 38 2RR, C, ∅ | CA3, SE1 | TR (0, 2044) (0, 2548) (/, /) history
LINE22 Hoshino, Kawarabayashi 22 42 2RR, C, ∅ | CA3, SE1 | TR (0, 2688) (0, 3684) (/, /) history
LINE24 Hoshino, Kawarabayashi 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 3456) (0, 4732) (/, /) history
LINE26 Hoshino, Kawarabayashi 26 50 2RR, C, ∅ | CA3, SE1 | TR (0, 4356) (0, 6382) (/, /) history
LINE28 Hoshino, Kawarabayashi 28 54 2RR, C, ∅ | CA3, SE1 | TR (0, 5400) (0, 7778) (/, /) history
LINE30 Hoshino, Kawarabayashi 30 58 2RR, C, ∅ | CA3, SE1 | TR (0, 6600) (0, 9312) (/, /) history
LINE32 Hoshino, Kawarabayashi 32 62 2RR, C, ∅ | CA3, SE1 | TR (0, 7964) (0, 11234) (/, /) history
LINE34 Hoshino, Kawarabayashi 34 66 2RR, C, ∅ | CA3, SE1 | TR (0, 9504) (0, 13190) (/, /) history
LINE36 Hoshino, Kawarabayashi 36 70 2RR, C, ∅ | CA3, SE1 | TR (0, 11232) (0, 15536) (/, /) history
LINE38 Hoshino, Kawarabayashi 38 74 2RR, C, ∅ | CA3, SE1 | TR (0, 13156) (0, 17862) (/, /) history
LINE40 Hoshino, Kawarabayashi 40 78 2RR, C, ∅ | CA3, SE1 | TR (0, 15294) (0, 20546) (/, /) history
INCR4 Hoshino, Kawarabayashi 4 6 2RR, C, ∅ | CA3, SE1 | TR (0, 48) (0, 48) (/, /) history
INCR6 Hoshino, Kawarabayashi 6 10 2RR, C, ∅ | CA3, SE1 | TR (0, 228) (0, 228) (/, /) history
INCR8 Hoshino, Kawarabayashi 8 14 2RR, C, ∅ | CA3, SE1 | TR (0, 624) (0, 638) (/, /) history
INCR10 Hoshino, Kawarabayashi 10 18 2RR, C, ∅ | CA3, SE1 | TR (0, 1440) (0, 1612) (/, /) history
INCR12 Hoshino, Kawarabayashi 12 22 2RR, C, ∅ | CA3, SE1 | TR (0, 2880) (0, 3398) (/, /) history
INCR14 Hoshino, Kawarabayashi 14 26 2RR, C, ∅ | CA3, SE1 | TR (0, 5180) (0, 6488) (/, /) history
INCR16 Hoshino, Kawarabayashi 16 30 2RR, C, ∅ | CA3, SE1 | TR (0, 8640) (0, 10332) (/, /) history
INCR18 Hoshino, Kawarabayashi 18 34 2RR, C, ∅ | CA3, SE1 | TR (0, 13548) (0, 17278) (/, /) history
INCR20 Hoshino, Kawarabayashi 20 38 2RR, C, ∅ | CA3, SE1 | TR (0, 20368) (0, 25672) (/, /) history
INCR22 Hoshino, Kawarabayashi 22 42 2RR, C, ∅ | CA3, SE1 | TR (0, 29484) (0, 40944) (/, /) history
INCR24 Hoshino, Kawarabayashi 24 46 2RR, C, ∅ | CA3, SE1 | TR (0, 41360) (0, 56602) (/, /) history
INCR26 Hoshino, Kawarabayashi 26 50 2RR, C, ∅ | CA3, SE1 | TR (0, 56500) (0, 81866) (/, /) history
INCR28 Hoshino, Kawarabayashi 28 54 2RR, C, ∅ | CA3, SE1 | TR (0, 75456) (0, 106870) (/, /) history
INCR30 Hoshino, Kawarabayashi 30 58 2RR, C, ∅ | CA3, SE1 | TR (0, 98820) (0, 136810) (/, /) history
INCR32 Hoshino, Kawarabayashi 32 62 2RR, C, ∅ | CA3, SE1 | TR (0, 127224) (0, 177990) (/, /) history
INCR34 Hoshino, Kawarabayashi 34 66 2RR, C, ∅ | CA3, SE1 | TR (0, 161348) (0, 222082) (/, /) history
INCR36 Hoshino, Kawarabayashi 36 70 2RR, C, ∅ | CA3, SE1 | TR (0, 201912) (0, 278060) (/, /) history
INCR38 Hoshino, Kawarabayashi 38 74 2RR, C, ∅ | CA3, SE1 | TR (0, 249686) (0, 336008) (/, /) history
INCR40 Hoshino, Kawarabayashi 40 78 2RR, C, ∅ | CA3, SE1 | TR (0, 305470) (0, 406960) (/, /) history
NL4_Mirrored Easton, Nemhauser, and Trick 4 6 2RR, C, M | CA3, SE1 | TR (0, 8276) (/, /) (0, 8276) history
NL6_Mirrored Easton, Nemhauser, and Trick 6 10 2RR, C, M | CA3, SE1 | TR (0, 23916) (/, /) (0, 26588) history
NL8_Mirrored Easton, Nemhauser, and Trick 8 14 2RR, C, M | CA3, SE1 | TR (0, 39721) (/, /) (0, 41928) history
NL10_Mirrored Easton, Nemhauser, and Trick 10 18 2RR, C, M | CA3, SE1 | TR (0, 58769) (/, /) (0, 63832) history
NL12_Mirrored Easton, Nemhauser, and Trick 12 22 2RR, C, M | CA3, SE1 | TR (0, 111064) (/, /) (0, 119608) history
NL14_Mirrored Easton, Nemhauser, and Trick 14 26 2RR, C, M | CA3, SE1 | TR (0, 183631) (/, /) (0, 199363) history
NL16_Mirrored Easton, Nemhauser, and Trick 16 30 2RR, C, M | CA3, SE1 | TR (0, 254242) (/, /) (0, 278305) history
BRA24_Mirrored Ribeiro and Urrutia 24 46 2RR, C, M | CA3, SE1 | TR (0, 451406) (/, /) (0, 500756) history
SUP4_Mirrored Uthus, Riddle, Guesgen 4 6 2RR, C, M | CA3, SE1 | TR (0, 63405) (/, /) (/, /) history
SUP6_Mirrored Uthus, Riddle, Guesgen 6 10 2RR, C, M | CA3, SE1 | TR (0, 130365) (/, /) (/, /) history
SUP8_Mirrored Uthus, Riddle, Guesgen 8 14 2RR, C, M | CA3, SE1 | TR (0, 182409) (/, /) (/, /) history
SUP10_Mirrored Uthus, Riddle, Guesgen 10 18 2RR, C, M | CA3, SE1 | TR (0, 316329) (/, /) (/, /) history
SUP12_Mirrored Uthus, Riddle, Guesgen 12 22 2RR, C, M | CA3, SE1 | TR (0, 453860) (/, /) (/, /) history
SUP14_Mirrored Uthus, Riddle, Guesgen 14 26 2RR, C, M | CA3, SE1 | TR (0, 557354) (/, /) (/, /) history
NFL16_Mirrored Trick 16 30 2RR, C, M | CA3, SE1 | TR (0, 228446) (/, /) (0, 248818) history
NFL18_Mirrored Trick 18 34 2RR, C, M | CA3, SE1 | TR (0, 276519) (/, /) (0, 299134) history
NFL20_Mirrored Trick 20 38 2RR, C, M | CA3, SE1 | TR (0, 316727) (/, /) (0, 359748) history
NFL22_Mirrored Trick 22 42 2RR, C, M | CA3, SE1 | TR (0, 384001) (/, /) (0, 418022) history
NFL24_Mirrored Trick 24 46 2RR, C, M | CA3, SE1 | TR (0, 434598) (/, /) (0, 465491) history
NFL26_Mirrored Trick 26 50 2RR, C, M | CA3, SE1 | TR (0, 495982) (/, /) (0, 548643) history
NFL28_Mirrored Trick 28 54 2RR, C, M | CA3, SE1 | TR (0, 560697) (/, /) (0, 609788) history
NFL30_Mirrored Trick 30 58 2RR, C, M | CA3, SE1 | TR (0, 688875) (/, /) (0, 739697) history
NFL32_Mirrored Trick 32 62 2RR, C, M | CA3, SE1 | TR (0, 836031) (/, /) (0, 914620) history
GAL4_Mirrored Uthus, Riddle, Guesgen 4 6 2RR, C, M | CA3, SE1 | TR (0, 416) (/, /) (/, /) history
GAL6_Mirrored Uthus, Riddle, Guesgen 6 10 2RR, C, M | CA3, SE1 | TR (0, 1365) (/, /) (/, /) history
GAL8_Mirrored Uthus, Riddle, Guesgen 8 14 2RR, C, M | CA3, SE1 | TR (0, 2373) (/, /) (/, /) history
GAL10_Mirrored Uthus, Riddle, Guesgen 10 18 2RR, C, M | CA3, SE1 | TR (0, 4443) (/, /) (/, /) history
GAL12_Mirrored Uthus, Riddle, Guesgen 12 22 2RR, C, M | CA3, SE1 | TR (0, 7034) (/, /) (/, /) history
GAL14_Mirrored Uthus, Riddle, Guesgen 14 26 2RR, C, M | CA3, SE1 | TR (0, 10255) (/, /) (/, /) history
GAL16_Mirrored Uthus, Riddle, Guesgen 16 30 2RR, C, M | CA3, SE1 | TR (0, 13619) (/, /) (/, /) history
GAL18_Mirrored Uthus, Riddle, Guesgen 18 34 2RR, C, M | CA3, SE1 | TR (0, 19050) (/, /) (/, /) history
GAL20_Mirrored Uthus, Riddle, Guesgen 20 38 2RR, C, M | CA3, SE1 | TR (0, 23738) (/, /) (/, /) history
GAL22_Mirrored Uthus, Riddle, Guesgen 22 42 2RR, C, M | CA3, SE1 | TR (0, 31461) (/, /) (/, /) history
GAL24_Mirrored Uthus, Riddle, Guesgen 24 46 2RR, C, M | CA3, SE1 | TR (0, 41287) (/, /) (/, /) history
GAL26_Mirrored Uthus, Riddle, Guesgen 26 50 2RR, C, M | CA3, SE1 | TR (0, 53802) (/, /) (/, /) history
GAL28_Mirrored Uthus, Riddle, Guesgen 28 54 2RR, C, M | CA3, SE1 | TR (0, 69992) (/, /) (/, /) history
GAL30_Mirrored Uthus, Riddle, Guesgen 30 58 2RR, C, M | CA3, SE1 | TR (0, 88831) (/, /) (/, /) history
GAL32_Mirrored Uthus, Riddle, Guesgen 32 62 2RR, C, M | CA3, SE1 | TR (0, 108374) (/, /) (/, /) history
GAL34_Mirrored Uthus, Riddle, Guesgen 34 66 2RR, C, M | CA3, SE1 | TR (0, 133976) (/, /) (/, /) history
GAL36_Mirrored Uthus, Riddle, Guesgen 36 70 2RR, C, M | CA3, SE1 | TR (0, 158549) (/, /) (/, /) history
GAL38_Mirrored Uthus, Riddle, Guesgen 38 74 2RR, C, M | CA3, SE1 | TR (0, 189126) (/, /) (/, /) history
GAL40_Mirrored Uthus, Riddle, Guesgen 40 78 2RR, C, M | CA3, SE1 | TR (0, 226820) (/, /) (/, /) history
CIRC4_Mirrored Easton, Nemhauser, Trick 4 6 2RR, C, M | CA3, SE1 | TR (0, 20) (/, /) (0, 20) history
CIRC6_Mirrored Easton, Nemhauser, Trick 6 10 2RR, C, M | CA3, SE1 | TR (0, 64) (/, /) (0, 72) history
CIRC8_Mirrored Easton, Nemhauser, Trick 8 14 2RR, C, M | CA3, SE1 | TR (0, 140) (/, /) (0, 140) history
CIRC10_Mirrored Easton, Nemhauser, Trick 10 18 2RR, C, M | CA3, SE1 | TR (0, 240) (/, /) (0, 272) history
CIRC12_Mirrored Easton, Nemhauser, Trick 12 22 2RR, C, M | CA3, SE1 | TR (0, 388) (/, /) (0, 432) history
CIRC14_Mirrored Easton, Nemhauser, Trick 14 26 2RR, C, M | CA3, SE1 | TR (0, 590) (/, /) (0, 672) history
CIRC16_Mirrored Easton, Nemhauser, Trick 16 30 2RR, C, M | CA3, SE1 | TR (0, 876) (/, /) (0, 968) history
CIRC18_Mirrored Easton, Nemhauser, Trick 18 34 2RR, C, M | CA3, SE1 | TR (0, 1188) (/, /) (0, 1306) history
CIRC20_Mirrored Easton, Nemhauser, Trick 20 38 2RR, C, M | CA3, SE1 | TR (0, 1600) (/, /) (0, 1852) history
CIRC22_Mirrored Easton, Nemhauser, Trick 22 42 2RR, C, M | CA3, SE1 | TR (0, 2068) (/, /) (/, /) history
CIRC24_Mirrored Easton, Nemhauser, Trick 24 46 2RR, C, M | CA3, SE1 | TR (0, 2688) (/, /) (/, /) history
CIRC26_Mirrored Easton, Nemhauser, Trick 26 50 2RR, C, M | CA3, SE1 | TR (0, 3380) (/, /) (/, /) history
CIRC28_Mirrored Easton, Nemhauser, Trick 28 54 2RR, C, M | CA3, SE1 | TR (0, 4144) (/, /) (/, /) history
CIRC30_Mirrored Easton, Nemhauser, Trick 30 58 2RR, C, M | CA3, SE1 | TR (0, 5100) (/, /) (/, /) history
CIRC32_Mirrored Easton, Nemhauser, Trick 32 62 2RR, C, M | CA3, SE1 | TR (0, 6144) (/, /) (/, /) history
CIRC34_Mirrored Easton, Nemhauser, Trick 34 66 2RR, C, M | CA3, SE1 | TR (0, 7276) (/, /) (/, /) history
CIRC36_Mirrored Easton, Nemhauser, Trick 36 70 2RR, C, M | CA3, SE1 | TR (0, 8640) (/, /) (/, /) history
CIRC38_Mirrored Easton, Nemhauser, Trick 38 74 2RR, C, M | CA3, SE1 | TR (0, 10108) (/, /) (/, /) history
CIRC40_Mirrored Easton, Nemhauser, Trick 40 78 2RR, C, M | CA3, SE1 | TR (0, 11680) (/, /) (/, /) history
CON4_Mirrored Urrutia, Ribeiro 4 6 2RR, C, M | CA3, SE1 | TR (0, 17) (/, /) (0, 17) history
CON6_Mirrored Urrutia, Ribeiro 6 10 2RR, C, M | CA3, SE1 | TR (0, 48) (/, /) (0, 48) history
CON8_Mirrored Urrutia, Ribeiro 8 14 2RR, C, M | CA3, SE1 | TR (0, 80) (0, 80) (/, /) history
CON10_Mirrored Urrutia, Ribeiro 10 18 2RR, C, M | CA3, SE1 | TR (0, 130) (/, /) (0, 130) history
CON12_Mirrored Urrutia, Ribeiro 12 22 2RR, C, M | CA3, SE1 | TR (0, 192) (/, /) (0, 192) history
CON14_Mirrored Urrutia, Ribeiro 14 26 2RR, C, M | CA3, SE1 | TR (0, 253) (/, /) (0, 253) history
CON16_Mirrored Urrutia, Ribeiro 16 30 2RR, C, M | CA3, SE1 | TR (0, 342) (/, /) (0, 342) history
CON18_Mirrored Urrutia, Ribeiro 18 34 2RR, C, M | CA3, SE1 | TR (0, 432) (/, /) (0, 432) history
CON20_Mirrored Urrutia, Ribeiro 20 38 2RR, C, M | CA3, SE1 | TR (0, 520) (/, /) (0, 522) history
CON22_Mirrored Urrutia, Ribeiro 22 42 2RR, C, M | CA3, SE1 | TR (0, 650) (/, /) (0, 650) history
CON24_Mirrored Urrutia, Ribeiro 24 46 2RR, C, M | CA3, SE1 | TR (0, 768) (/, /) (0, 768) history
CON26_Mirrored Urrutia, Ribeiro 26 50 2RR, C, M | CA3, SE1 | TR (0, 884) (/, /) (/, /) history
CON28_Mirrored Urrutia, Ribeiro 28 54 2RR, C, M | CA3, SE1 | TR (0, 1021) (/, /) (/, /) history
CON30_Mirrored Urrutia, Ribeiro 30 58 2RR, C, M | CA3, SE1 | TR (0, 1170) (/, /) (/, /) history
CON32_Mirrored Urrutia, Ribeiro 32 62 2RR, C, M | CA3, SE1 | TR (0, 1344) (/, /) (/, /) history
CON34_Mirrored Urrutia, Ribeiro 34 66 2RR, C, M | CA3, SE1 | TR (0, 1512) (/, /) (/, /) history
CON36_Mirrored Urrutia, Ribeiro 36 70 2RR, C, M | CA3, SE1 | TR (0, 1692) (/, /) (/, /) history
CON38_Mirrored Urrutia, Ribeiro 38 74 2RR, C, M | CA3, SE1 | TR (0, 1900) (/, /) (/, /) history
CON40_Mirrored Urrutia, Ribeiro 40 78 2RR, C, M | CA3, SE1 | TR (0, 2099) (/, /) (/, /) history
LINE4_Mirrored Hoshino, Kawarabayashi 4 6 2RR, C, M | CA3, SE1 | TR (0, 24) (/, /) (/, /) history
LINE6_Mirrored Hoshino, Kawarabayashi 6 10 2RR, C, M | CA3, SE1 | TR (0, 76) (/, /) (/, /) history
LINE8_Mirrored Hoshino, Kawarabayashi 8 14 2RR, C, M | CA3, SE1 | TR (0, 156) (/, /) (/, /) history
LINE10_Mirrored Hoshino, Kawarabayashi 10 18 2RR, C, M | CA3, SE1 | TR (0, 288) (/, /) (/, /) history
LINE12_Mirrored Hoshino, Kawarabayashi 12 22 2RR, C, M | CA3, SE1 | TR (0, 480) (/, /) (/, /) history
LINE14_Mirrored Hoshino, Kawarabayashi 14 26 2RR, C, M | CA3, SE1 | TR (0, 740) (/, /) (/, /) history
LINE16_Mirrored Hoshino, Kawarabayashi 16 30 2RR, C, M | CA3, SE1 | TR (0, 1080) (/, /) (/, /) history
LINE18_Mirrored Hoshino, Kawarabayashi 18 34 2RR, C, M | CA3, SE1 | TR (0, 1512) (/, /) (/, /) history
LINE20_Mirrored Hoshino, Kawarabayashi 20 38 2RR, C, M | CA3, SE1 | TR (0, 2044) (/, /) (/, /) history
LINE22_Mirrored Hoshino, Kawarabayashi 22 42 2RR, C, M | CA3, SE1 | TR (0, 2688) (/, /) (/, /) history
LINE24_Mirrored Hoshino, Kawarabayashi 24 46 2RR, C, M | CA3, SE1 | TR (0, 3456) (/, /) (/, /) history
LINE26_Mirrored Hoshino, Kawarabayashi 26 50 2RR, C, M | CA3, SE1 | TR (0, 4356) (/, /) (/, /) history
LINE28_Mirrored Hoshino, Kawarabayashi 28 54 2RR, C, M | CA3, SE1 | TR (0, 5400) (/, /) (/, /) history
LINE30_Mirrored Hoshino, Kawarabayashi 30 58 2RR, C, M | CA3, SE1 | TR (0, 6600) (/, /) (/, /) history
LINE32_Mirrored Hoshino, Kawarabayashi 32 62 2RR, C, M | CA3, SE1 | TR (0, 7964) (/, /) (/, /) history
LINE34_Mirrored Hoshino, Kawarabayashi 34 66 2RR, C, M | CA3, SE1 | TR (0, 9504) (/, /) (/, /) history
LINE36_Mirrored Hoshino, Kawarabayashi 36 70 2RR, C, M | CA3, SE1 | TR (0, 11232) (/, /) (/, /) history
LINE38_Mirrored Hoshino, Kawarabayashi 38 74 2RR, C, M | CA3, SE1 | TR (0, 13156) (/, /) (/, /) history
LINE40_Mirrored Hoshino, Kawarabayashi 40 78 2RR, C, M | CA3, SE1 | TR (0, 15294) (/, /) (/, /) history
INCR4_Mirrored Hoshino, Kawarabayashi 4 6 2RR, C, M | CA3, SE1 | TR (0, 48) (/, /) (/, /) history
INCR6_Mirrored Hoshino, Kawarabayashi 6 10 2RR, C, M | CA3, SE1 | TR (0, 228) (/, /) (/, /) history
INCR8_Mirrored Hoshino, Kawarabayashi 8 14 2RR, C, M | CA3, SE1 | TR (0, 624) (/, /) (/, /) history
INCR10_Mirrored Hoshino, Kawarabayashi 10 18 2RR, C, M | CA3, SE1 | TR (0, 1440) (/, /) (/, /) history
INCR12_Mirrored Hoshino, Kawarabayashi 12 22 2RR, C, M | CA3, SE1 | TR (0, 2880) (/, /) (/, /) history
INCR14_Mirrored Hoshino, Kawarabayashi 14 26 2RR, C, M | CA3, SE1 | TR (0, 5180) (/, /) (/, /) history
INCR16_Mirrored Hoshino, Kawarabayashi 16 30 2RR, C, M | CA3, SE1 | TR (0, 8640) (/, /) (/, /) history
INCR18_Mirrored Hoshino, Kawarabayashi 18 34 2RR, C, M | CA3, SE1 | TR (0, 13548) (/, /) (/, /) history
INCR20_Mirrored Hoshino, Kawarabayashi 20 38 2RR, C, M | CA3, SE1 | TR (0, 20368) (/, /) (/, /) history
INCR22_Mirrored Hoshino, Kawarabayashi 22 42 2RR, C, M | CA3, SE1 | TR (0, 29484) (/, /) (/, /) history
INCR24_Mirrored Hoshino, Kawarabayashi 24 46 2RR, C, M | CA3, SE1 | TR (0, 41360) (/, /) (/, /) history
INCR26_Mirrored Hoshino, Kawarabayashi 26 50 2RR, C, M | CA3, SE1 | TR (0, 56500) (/, /) (/, /) history
INCR28_Mirrored Hoshino, Kawarabayashi 28 54 2RR, C, M | CA3, SE1 | TR (0, 75456) (/, /) (/, /) history
INCR30_Mirrored Hoshino, Kawarabayashi 30 58 2RR, C, M | CA3, SE1 | TR (0, 98820) (/, /) (/, /) history
INCR32_Mirrored Hoshino, Kawarabayashi 32 62 2RR, C, M | CA3, SE1 | TR (0, 127224) (/, /) (/, /) history
INCR34_Mirrored Hoshino, Kawarabayashi 34 66 2RR, C, M | CA3, SE1 | TR (0, 161348) (/, /) (/, /) history
INCR36_Mirrored Hoshino, Kawarabayashi 36 70 2RR, C, M | CA3, SE1 | TR (0, 201912) (/, /) (/, /) history
INCR38_Mirrored Hoshino, Kawarabayashi 38 74 2RR, C, M | CA3, SE1 | TR (0, 249686) (/, /) (/, /) history
INCR40_Mirrored Hoshino, Kawarabayashi 40 78 2RR, C, M | CA3, SE1 | TR (0, 305470) (/, /) (/, /) history
NL4_K1 Brandao, Pedroso 4 7 2RR, R, ∅ | CA3, SE1 | TR (0, 8160) (0, 8160) (/, /) history
NL4_K2 Brandao, Pedroso 4 8 2RR, R, ∅ | CA3, SE1 | TR (0, 8160) (0, 8160) (/, /) history
NL4_K3 Brandao, Pedroso 4 9 2RR, R, ∅ | CA3, SE1 | TR (0, 8044) (0, 8044) (/, /) history
NL6_K1 Brandao, Pedroso 6 11 2RR, R, ∅ | CA3, SE1 | TR (0, 23124) (0, 23124) (/, /) history
NL6_K2 Brandao, Pedroso 6 12 2RR, R, ∅ | CA3, SE1 | TR (0, 22557) (0, 22557) (/, /) history
NL8_K1 Brandao, Pedroso 8 15 2RR, R, ∅ | CA3, SE1 | TR (0, 39128) (0, 39128) (/, /) history
NL8_K2 Brandao, Pedroso 8 16 2RR, R, ∅ | CA3, SE1 | TR (0, 38761) (0, 38761) (/, /) history
NL8_K3 Brandao, Pedroso 8 17 2RR, R, ∅ | CA3, SE1 | TR (0, 38670) (0, 38670) (/, /) history
NL10_K1 Perez-Caceres and Rif 10 19 2RR, R, ∅ | CA3, SE1 | TR (0, 59436) (0, 59436) (0, 58825) history
NL10_K2 Perez-Caceres and Rif 10 20 2RR, R, ∅ | CA3, SE1 | TR (0, 59436) (0, 59436) (0, 58825) history
NL10_K3 Perez-Caceres and Rif 10 21 2RR, R, ∅ | CA3, SE1 | TR (0, 59436) (0, 59436) (0, 58825) history
NL12_K1 Perez-Caceres and Rif 12 23 2RR, R, ∅ | CA3, SE1 | TR (0, 108629) (0, 115072) (0, 108629) history
NL12_K2 Perez-Caceres and Rif 12 24 2RR, R, ∅ | CA3, SE1 | TR (0, 108629) (0, 115072) (0, 108629) history
NL12_K3 Perez-Caceres and Rif 12 25 2RR, R, ∅ | CA3, SE1 | TR (0, 108629) (0, 115072) (0, 108629) history
NL14_K1 Perez-Caceres and Rif 14 27 2RR, R, ∅ | CA3, SE1 | TR (0, 183354) (0, 207075) (0, 183354) history
NL14_K2 Perez-Caceres and Rif 14 28 2RR, R, ∅ | CA3, SE1 | TR (0, 183354) (0, 207075) (0, 183354) history
NL14_K3 Perez-Caceres and Rif 14 29 2RR, R, ∅ | CA3, SE1 | TR (0, 183354) (0, 207075) (0, 183354) history
NL16_K1 Perez-Caceres and Rif 16 31 2RR, R, ∅ | CA3, SE1 | TR (0, 249477) (0, 288016) (0, 249477) history
NL16_K2 Perez-Caceres and Rif 16 31 2RR, R, ∅ | CA3, SE1 | TR (0, 249477) (0, 288016) (0, 249477) history
NL16_K3 Perez-Caceres and Rif 16 33 2RR, R, ∅ | CA3, SE1 | TR (0, 249477) (0, 288016) (0, 249477) history
SUP4_K1 Brandao, Pedroso 4 7 2RR, R, ∅ | CA3, SE1 | TR (0, 63334) (0, 63334) (/, /) history
SUP4_K2 Brandao, Pedroso 4 8 2RR, R, ∅ | CA3, SE1 | TR (0, 63263) (0, 63263) (/, /) history
SUP4_K3 Brandao, Pedroso 4 9 2RR, R, ∅ | CA3, SE1 | TR (0, 63192) (0, 63192) (/, /) history
SUP6_K1 Brandao, Pedroso 6 11 2RR, R, ∅ | CA3, SE1 | TR (0, 127903) (0, 127903) (/, /) history
SUP6_K2 Brandao, Pedroso 6 12 2RR, R, ∅ | CA3, SE1 | TR (0, 127370) (0, 127370) (/, /) history
SUP8_K1 Brandao, Pedroso 8 15 2RR, R, ∅ | CA3, SE1 | TR (0, 178115) (0, 178115) (/, /) history
SUP8_K2 Brandao, Pedroso 8 16 2RR, R, ∅ | CA3, SE1 | TR (0, 177406) (0, 177406) (/, /) history
SUP8_K3 Brandao, Pedroso 8 17 2RR, R, ∅ | CA3, SE1 | TR (0, 177258) (0, 177258) (/, /) history
GAL4_K1 Brandao, Pedroso 4 7 2RR, R, ∅ | CA3, SE1 | TR (0, 414) (0, 414) (/, /) history
GAL4_K2 Brandao, Pedroso 4 8 2RR, R, ∅ | CA3, SE1 | TR (0, 413) (0, 413) (/, /) history
GAL4_K3 Brandao, Pedroso 4 9 2RR, R, ∅ | CA3, SE1 | TR (0, 412) (0, 412) (/, /) history
GAL6_K1 Brandao, Pedroso 6 11 2RR, R, ∅ | CA3, SE1 | TR (0, 1330) (0, 1330) (/, /) history
GAL6_K2 Brandao, Pedroso 6 12 2RR, R, ∅ | CA3, SE1 | TR (0, 1294) (0, 1294) (/, /) history
GAL8_K1 Brandao, Pedroso 8 15 2RR, R, ∅ | CA3, SE1 | TR (0, 2298) (0, 2298) (/, /) history
GAL8_K2 Brandao, Pedroso 8 16 2RR, R, ∅ | CA3, SE1 | TR (0, 2261) (0, 2261) (/, /) history
GAL8_K3 Brandao, Pedroso 8 17 2RR, R, ∅ | CA3, SE1 | TR (0, 2250) (0, 2250) (/, /) history
CIRC4_K1 Brandao, Pedroso 4 7 2RR, R, ∅ | CA3, SE1 | TR (0, 18) (0, 18) (/, /) history
CIRC4_K2 Brandao, Pedroso 4 8 2RR, R, ∅ | CA3, SE1 | TR (0, 18) (0, 18) (/, /) history
CIRC4_K3 Brandao, Pedroso 4 9 2RR, R, ∅ | CA3, SE1 | TR (0, 16) (0, 16) (/, /) history
CIRC6_K1 Brandao, Pedroso 6 11 2RR, R, ∅ | CA3, SE1 | TR (0, 60) (0, 60) (/, /) history
CIRC8_K1 Brandao, Pedroso 8 15 2RR, R, ∅ | CA3, SE1 | TR (0, 128) (0, 128) (/, /) history
CON4_K1 Brandao, Pedroso 4 7 2RR, R, ∅ | CA3, SE1 | TR (0, 16) (0, 16) (/, /) history
CON6_K1 Brandao, Pedroso 6 11 2RR, R, ∅ | CA3, SE1 | TR (0, 42) (0, 42) (/, /) history
MLB_DIV1 Moody 6 26 NRR, C, ∅ | CA3, SE1 | TR (/, /) (0, 54801) (/, /) history
MLB_DIV2 Moody 10 26 NRR, C, ∅ | CA3, SE1 | TR (/, /) (0, 168429) (/, /) history
MLB_DIV4 Moody 20 36 NRR, C, ∅ | CA3, SE1 | TR (/, /) (0, 381066) (/, /) history
MLB_DIV5 Moody 30 52 NRR, C, ∅ | CA3, SE1 | TR (/, /) (0, 959944) (/, /) history
NBA30 Hoshino, Kawarabayashi 30 30 NRR, C, ∅ | CA3, SE1 | TR (/, /) (0, 537791) (/, /) history
NPB12 Hoshino, Kawarabayashi 12 12 NRR, C, ∅ | CA3, SE1 | TR (/, /) (0, 42950) (/, /) history
NPB Central6 Hoshino, Kawarabayashi 6 40 8RR, C, P | CA3, SE1 | TR (/, /) (0, 57836) (/, /) history
NPB Pacific6 Hoshino, Kawarabayashi 6 40 8RR, C, P | CA3, SE1 | TR (/, /) (0, 114169) (/, /) history
CIRC_Balanced_a_8 Jefferson, Miguel, Hnich, Walsh, Gent 8 7 1RR, C, ∅ | CA3 | TR (/, /) (0, 82) (/, /) history
CIRC_Balanced_b_8 Jefferson, Miguel, Hnich, Walsh, Gent 8 7 1RR, C, ∅ | CA3 | TR (/, /) (0, 82) (/, /) history
CIRC_Balanced_c_8 Jefferson, Miguel, Hnich, Walsh, Gent 8 7 1RR, C, ∅ | CA3 | TR (/, /) (0, 80) (/, /) history
CIRC_Balanced_d_8 Jefferson, Miguel, Hnich, Walsh, Gent 8 7 1RR, C, ∅ | CA3 | TR (/, /) (0, 80) (/, /) history
CIRC_Balanced_e_8 Jefferson, Miguel, Hnich, Walsh, Gent 8 7 1RR, C, ∅ | CA3 | TR (/, /) (0, 78) (/, /) history
CIRC_NonBalanced_a_14 Jefferson, Miguel, Hnich, Walsh, Gent 14 13 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_a_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_b_14 Jefferson, Miguel, Hnich, Walsh, Gent 14 13 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_b_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_c_14 Jefferson, Miguel, Hnich, Walsh, Gent 14 13 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_c_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_d_14 Jefferson, Miguel, Hnich, Walsh, Gent 14 13 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_d_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_e_14 Jefferson, Miguel, Hnich, Walsh, Gent 14 13 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_e_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_f_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_g_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_h_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_i_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history
CIRC_NonBalanced_j_20 Jefferson, Miguel, Hnich, Walsh, Gent 20 19 1RR, C, ∅ | CA3 | TR (/, /) (/, /) (/, /) history